分类: 深度学习

15 篇文章

3.14 正向传播、反向传播和计算图
正向传播 正向传播是指对神经网络沿着从输入层到输出层的顺序,依次计算并存储模型的中间变量(包括输出)。为简单起见,假设输入是一个特征为$\boldsymbol{x} \in \mathbb{R}^d$的样本,且不考虑偏差项,那么中间变量 $$\boldsymbol{z} = \boldsymbol{W}^{(1)} \boldsymbol{x},$…
3.13 丢弃法
方法 除了权重衰减以外,深度学习模型常常使用丢弃法(dropout)来应对过拟合问题。丢弃法有一些不同的变体。本节中提到的丢弃法特指倒置丢弃法(inverted dropout)。 一个单隐藏层的多层感知机,其中输入个数为4,隐藏单元个数为5,且隐藏单元$h_i$($i=1, \ldots, 5$)的计算表达式为 $$h_i = \phi\left…
3.12 权重衰减
范数 L1范数 L1范数是向量中所有元素绝对值的和。对于一个向量 $ w = [w_1, w_2, …, w_n] $,其L1范数定义为: $$|w|_1 = |w_1| + |w_2| + … + |w_n|$$ L1范数常用于稀疏性约束,因为它会促使某些权重变为零,从而实现特征选择。 L2范数 L2范数是向量中所有元素平方和的平方根。对于同一个…
3.11 模型选择、欠拟合和过拟合
训练误差和泛化误差 训练误差(training error)指模型在训练数据集上表现出的误差,泛化误差(generalization error)指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛化误差可以使用损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函数。 在机…
3.8 多层感知机
隐藏层 多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hidden layer)。隐藏层位于输入层和输出层之间。 具体来说,给定一个小批量样本$\boldsymbol{X} \in \mathbb{R}^{n \times d}$,其批量大小为$n$,输入个数为$d$。假设多层感知机只有一个隐藏层,其中隐藏单元个数为$h$。记隐藏层的输出(…