3.10 多层感知机的简洁实现

导入需要的库

from torch import nn
from torch.nn import init
import numpy as np
import sys
import torchvision
from torch.utils import data
from torchvision import transforms

3.10.1 定义模型

和softmax回归唯一的不同在于,多加了一个全连接层作为隐藏层。它的隐藏单元个数为256,并使用ReLU函数作为激活函数。

num_inputs, num_outputs, num_hiddens = 784, 10, 256
  
class FlattenLayer(nn.Module):
    def __init__(self):
        super(FlattenLayer, self).__init__()
    def forward(self, x): 
        return x.view(x.shape[0], -1) # x 的形状转换成(batch, 784),x.shape[0]表示batch_size,-1表示自动推测

net = nn.Sequential(  # Sequential是一个有序容器,网络层将按照在传入Sequential的顺序依次被添加到计算图中执行
        FlattenLayer(),  # 先将输入x展平,即将形状为(batch, 1, 28, 28)的输入转换成(batch, 784)的输出
        nn.Linear(num_inputs, num_hiddens),   # 隐藏层
        nn.ReLU(), # 激活函数
        nn.Linear(num_hiddens, num_outputs),  # 输出层
        )

for params in net.parameters(): # 初始化模型参数
    init.normal_(params, mean=0, std=0.01) # 正态分布初始化

3.10.2 读取数据并训练模型

加载模型

def get_dataloader_workers():
    return 0 if sys.platform.startswith('win') else 4

def load_data_fashion_mnist(batch_size, resize=None): 
    # 下载Fashion-MNIST数据集,然后将其加载到内存中,返回训练集和测试集的数据迭代器
    mnist_train = torchvision.datasets.FashionMNIST(root="data", train=True, transform=transforms.ToTensor(), download=True)
    mnist_test = torchvision.datasets.FashionMNIST(root="data", train=False, transform=transforms.ToTensor(), download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))

batch_size = 256
train_iter, test_iter = load_data_fashion_mnist(batch_size)

训练模型

loss = torch.nn.CrossEntropyLoss() # softmax运算和交叉熵损失计算

optimizer = torch.optim.SGD(net.parameters(), lr=0.5) # sgd优化算法

def evaluate_accuracy(data_iter, net):
    acc_sum, n = 0.0, 0
    for X, y in data_iter: # X是图像,y是标签,数量为batch_size
        acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() # net(X) 返回预测概率,argmax(dim=1)返回概率最大的类别,与标签y比较
        n += y.shape[0] # y.shape[0]是y的行数,也就是batch_size
    return acc_sum / n # 返回正确率

def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params=None, lr=None, optimizer=None): 
    for epoch in range(num_epochs):  # 训练模型一共需要num_epochs个迭代周期
        train_l_sum, train_acc_sum, n = 0.0, 0.0, 0 # 训练损失总和,训练准确度总和,样本数
        for X, y in train_iter: # X是图像,y是标签,数量为batch_size
            y_hat = net(X) # 预测概率
            l = loss(y_hat, y).sum() # 计算损失,sum()将所有loss值相加得到一个标量
            optimizer.zero_grad() # 梯度清零
            l.backward() # 计算梯度
            optimizer.step()  # 更新模型参数

            train_l_sum += l.item() # 将当前批次loss值相加得到一个总的loss值
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item() # 计算总准确率
            n += y.shape[0] # y.shape[0]是y的行数,也就是batch_size,计算总样本数

        test_acc = evaluate_accuracy(test_iter, net) # 计算测试集准确率
        print('周期 %d, 损失 %.4f, 数据集准确率 %.3f, 测试集准确率 %.3f'
              % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))

num_epochs = 5
train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)
知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议
上一篇
下一篇