隐藏层
多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hidden layer)。隐藏层位于输入层和输出层之间。
具体来说,给定一个小批量样本$\boldsymbol{X} \in \mathbb{R}^{n \times d}$,其批量大小为$n$,输入个数为$d$。假设多层感知机只有一个隐藏层,其中隐藏单元个数为$h$。记隐藏层的输出(也称为隐藏层变量或隐藏变量)为$\boldsymbol{H}$,有$\boldsymbol{H} \in \mathbb{R}^{n \times h}$。因为隐藏层和输出层均是全连接层,可以设隐藏层的权重参数和偏差参数分别为$\boldsymbol{W}_h \in \mathbb{R}^{d \times h}$和 $\boldsymbol{b}_h \in \mathbb{R}^{1 \times h}$,输出层的权重和偏差参数分别为$\boldsymbol{W}_o \in \mathbb{R}^{h \times q}$和$\boldsymbol{b}_o \in \mathbb{R}^{1 \times q}$。
先来看一种含单隐藏层的多层感知机的设计。其输出$\boldsymbol{O} \in \mathbb{R}^{n \times q}$的计算为
$$
\begin{aligned}
\boldsymbol{H} &= \boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h,\\
\boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o,
\end{aligned}
$$
也就是将隐藏层的输出直接作为输出层的输入。如果将以上两个式子联立起来,可以得到
$$
\boldsymbol{O} = (\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h)\boldsymbol{W}_o + \boldsymbol{b}_o = \boldsymbol{X} \boldsymbol{W}_h\boldsymbol{W}_o + \boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_o.
$$
从联立后的式子可以看出,虽然神经网络引入了隐藏层,却依然等价于一个单层神经网络:其中输出层权重参数为$\boldsymbol{W}_h\boldsymbol{W}_o$,偏差参数为$\boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_o$。不难发现,即便再添加更多的隐藏层,以上设计依然只能与仅含输出层的单层神经网络等价。
激活函数
上述问题的根源在于全连接层只是对数据做仿射变换(affine transformation),而多个仿射变换的叠加仍然是一个仿射变换。解决问题的一个方法是引入非线性变换,例如对隐藏变量使用按元素运算的非线性函数进行变换,然后再作为下一个全连接层的输入。这个非线性函数被称为激活函数(activation function)。
ReLU函数
ReLU(rectified linear unit)函数提供了一个很简单的非线性变换。给定元素$x$,该函数定义为
$$
\text{ReLU}(x) = \max(x, 0).
$$
可以看出,ReLU函数只保留正数元素,并将负数元素清零。函数图像:
显然,当输入为负数时,ReLU函数的导数为0;当输入为正数时,ReLU函数的导数为1。尽管输入为0时ReLU函数不可导,但是可以取此处的导数为0。下面绘制ReLU函数的导数。
sigmoid函数
sigmoid函数可以将元素的值变换到0和1之间:
$$
\text{sigmoid}(x) = \frac{1}{1 + \exp(-x)}.
$$
sigmoid函数在早期的神经网络中较为普遍,但它目前逐渐被更简单的ReLU函数取代。下面绘制了sigmoid函数。当输入接近0时,sigmoid函数接近线性变换。
依据链式法则,sigmoid函数的导数
$$
\text{sigmoid}'(x) = \text{sigmoid}(x)\left(1-\text{sigmoid}(x)\right).
$$
下面绘制了sigmoid函数的导数。当输入为0时,sigmoid函数的导数达到最大值0.25;当输入越偏离0时,sigmoid函数的导数越接近0。
tanh函数
tanh(双曲正切)函数可以将元素的值变换到-1和1之间:
$$
\text{tanh}(x) = \frac{1 – \exp(-2x)}{1 + \exp(-2x)}.
$$
当输入接近0时,tanh函数接近线性变换。虽然该函数的形状和sigmoid函数的形状很像,但tanh函数在坐标系的原点上对称。
依据链式法则,tanh函数的导数
$$
\text{tanh}'(x) = 1 – \text{tanh}^2(x).
$$
下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。
多层感知机
多层感知机就是含有至少一个隐藏层的由全连接层组成的神经网络,且每个隐藏层的输出通过激活函数进行变换。多层感知机的层数和各隐藏层中隐藏单元个数都是超参数。以单隐藏层为例并沿用本节之前定义的符号,多层感知机按以下方式计算输出:
$$
\begin{aligned}
\boldsymbol{H} &= \phi(\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h),\\
\boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o,
\end{aligned}
$$
其中$\phi$表示激活函数。在分类问题中,我们可以对输出$\boldsymbol{O}$做softmax运算,并使用softmax回归中的交叉熵损失函数。
在回归问题中,我们将输出层的输出个数设为1,并将输出$\boldsymbol{O}$直接提供给线性回归中使用的平方损失函数。